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The structure of humpback whale �Megaptera novaeangliae� songs was examined using information
theory techniques. The song is an ordered sequence of individual sound elements separated by gaps
of silence. Song samples were converted into sequences of discrete symbols by both human and
automated classifiers. This paper analyzes the song structure in these symbol sequences using
information entropy estimators and autocorrelation estimators. Both parametric and nonparametric
entropy estimators are applied to the symbol sequences representing the songs. The results provide
quantitative evidence consistent with the hierarchical structure proposed for these songs by Payne
and McVay �Science 173, 587–597 �1971��. Specifically, this analysis demonstrates that: �1� There
is a strong structural constraint, or syntax, in the generation of the songs, and �2� the structural
constraints exhibit periodicities with periods of 6–8 and 180–400 units. This implies that no
empirical Markov model is capable of representing the songs’ structure. The results are robust to the
choice of either human or automated song-to-symbol classifiers. In addition, the entropy estimates
indicate that the maximum amount of information that could be communicated by the sequence of
sounds made is less than 1 bit per second. © 2006 Acoustical Society of America.
�DOI: 10.1121/1.2161827�
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I. INTRODUCTION

Payne and McVay �1971� first analyzed the structure of
the songs of humpback whales �Megaptera novaeangliae�.
Their analysis relied on human judgments both to determine
whether one sound element was identical to another and to
determine whether the song fit the hypothesized hierarchical
song structure. Subsequent studies �Guinee and Payne, 1988;
Miller et al., 2000; Noad et al., 2000; Payne et al., 1983�
also relied on human observers for these evaluations. This
paper presents methods to remove these subjective judg-
ments by employing an automated classifier to group the
units and applying objective information theory techniques
to study the song structure.

The rest of this section reviews the previously proposed
structure for humpback whale songs and provides an over-
view of the elements of information theory necessary for this
research. Recognizing that information theory falls outside
the purview of most animal bioacousticians, the most impor-
tant theorems and concepts are interpreted in the context of
animal communications studies.

a�Parts of this paper were presented at the ASA/EAA/DEGA meeting held in
Berlin, Germany in March 1999.

b�Current address: Speech and Hearing Bioscience and Technology,
Harvard-MIT Division of Health Science and Technology, Massachusetts
Institute of Technology, Cambridge, MA 02139.

c�
Electronic address: johnbuck@ieee.org
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A. Songs of humpback whales

Most humpback whales have an annual migratory pat-
tern, breeding in subtropical latitudes during winter, and mi-
grating to high latitude waters to feed in the summer. The
vocalizations produced by humpback whales during these
feeding and breeding seasons differ greatly. The feeding calls
involve a few simple sound patterns produced in simple se-
quences �D’Vincent et al., 1985�, whereas whales produce
complex songs during the breeding season. The term song is
used in animals, such as songbirds and whales, to describe an
acoustic signal that involves a wide variety of sounds re-
peated in a specific sequence.

Humpback songs consist of a sequence of discrete sound
elements, called units, that are separated by silence. Each
song contains a complicated series of more than 12 different
units. These units cover a wide frequency range
�30–3000 Hz�, and consist of both modulated tones and
pulse trains. Payne and McVay �1971� proposed a hierarchi-
cal structure for humpback song. A song is a sequence of
themes, where a theme consists of a phrase, or very similar
phrases, repeated several times. A phrase is a sequence of
several units. The song is repeated many times with consid-
erable accuracy to make a song session. The reported range
of song duration is from 7 to 30 min �Payne and McVay,
1971� or from 6 to 35 min �Winn and Winn, 1978�. Winn

and Winn �1978� also reported the maximum duration of
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observed song sessions to be 22 h. Throughout this paper, we
use song length to indicate the number of units in a song, and
song duration to indicate the number of minutes the song
lasts.

All whales in a population are singing the same or very
similar songs at a given time, although whales within hearing
range do not coordinate to sing the same part of the song at
the same time. The songs within a population gradually
change over time, so that after several singing seasons few
elements of the song have been preserved �Payne et al.,
1983�. Several reviewers believe that the speed and perva-
siveness of this change indicates that singing whales must
learn each sound unit and the sequence order that make up a
full song �Janik and Slater, 1997; Tyack and Sayigh, 1997�.
Guinee and Payne �1988� suggested that this song evolution
presents a difficult learning and memory task. They proposed
that humpback whales increase the redundancy of parts of
phrases between adjacent themes as a mnemonic aid, and
they found that this redundancy was more common in songs
with larger numbers of themes where more material would
have to be remembered.

This paper analyzes humpback song with a suite of tech-
niques to determine whether the song contains mathematical
properties consistent with hierarchical structure. In this pa-
per, the term unit represents the smallest sound element sepa-
rated by silence, as defined by Payne and McVay �1971�, and
the term song denotes a sequence of units, but the analysis
methods developed do not assume the hierarchical syntax
proposed by Payne and McVay �1971�. A humpback whale
song classifier is defined as a method of extracting individual
units from a continuous sound recording and converting
them into discrete symbols �i.e., A, B, C,¼� that represent
the particular types of sound, preserving the sequence order.
In so doing, the classifier absorbs minor variations between
sounds by lumping them together as a single symbol. The
classifier assigns a new symbol when it encounters a sound
element that is deemed sufficiently different from all previ-
ously encountered units. Each symbol has no semantics other
than representing the particular type of unit. Winn and Winn
�1978� performed classification by assigning “approximate
phonetic terms” such as “moan,” “snore,” “cry,” and “chirp”
to the units. Our analysis of song structure is based on a
sequence of units represented by abstract symbols and, there-
fore, it ignores these acoustic features, duration, and other
details of units and gaps between units.

In this paper, the structural constraints in the symbol
sequence are referred to as a syntax or grammar, with no
relation to semantics that may or may not exist. This differs
from formal language theory where a syntax denotes a set of
rules that generates all legal sentences but no illegal ones
based on the language’s grammar. This paper focuses on the
question of which class of syntactic models are the simplest
and most accurate for generating sequences of units that
match the sequences in humpback songs. Like Payne �1995�,
no claims positive or negative are made about the semantic
content of the songs.

Our analysis addressed three questions. First, what is the
quantitative measure of the information conveyed by the

songs? Second, can any of the common stochastic models
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used in animal communication studies reasonably approxi-
mate the statistical features of the songs? Third, does a hier-
archical model provide the best match to the structure of the
songs?

B. Information theory

This section provides an overview of information theory
as it pertains to the present study, including several topics not
previously employed to analyze animal communications.
The primary focus of the section is methods of entropy esti-
mation, but it is first necessary to provide a framework
within which these estimates can be properly interpreted. In-
formation theory studies an information source X, which
produces a sequence, or stream, of discrete symbols. The
sequence produced is not assumed to be purposeful or mean-
ingful. Information theory provides techniques to analyze the
characteristics of the source, such as the structure of its out-
put, without knowledge of the semantics of the source or its
output.

1. Coding bound

At each time i the source X produces a symbol xi, for
i=1,2 ,3 , . . .. The notation xi

j represents the subsequence
�xi ,xi+1 , . . . ,xj�, i� j. An output symbol is called a letter, and
the set of all possible symbols an alphabet, denoted by set A.
The entire output sequence is called a message, denoted by
x1

�. Again, there is no assumption that the letters, message, or
alphabet are meaningful.

An encoder converts a message to a binary sequence, or
code, from which a matching decoder can uniquely and ex-
actly reproduce the original message.1 An encoder is denoted
by f�·�. Let �f�x1

��� denote the code length of x1
�, i.e., the

number of binary digits, or bits, produced by f to encode the
message x1

� of length �.
Definition 1 The coding rate of the encoder f for a given

sequence x1
� is defined as

Rf �x1
�� = lim sup

�→�

�f�x1
���

�
, �1�

that is, the average number of bits per symbol required to
code the sequence in the limit of an infinitely long sequence.

There is a lower bound on the coding rate, and there is
always some encoder that attains this bound.

Theorem 1 �Coding theorems� For a given message x1
�,

there is some R� such that

Rf �x1
�� � R� �2�

holds for any encoder f . Moreover, there exists an encoder
fopt which satisfies Eq. �2� with equality, that is

Ropt�x1
�� = R�. �3�

Equation �3� is called the coding theorem and Eq. �2� is
called the converse coding theorem.

Asymptotically optimal encoders satisfy Eq. �3�, achiev-
ing the smallest possible code rate in the limit of an infinitely
long data sequence. Conversely, encoding x1

� at a rate R less
than R� guarantees that x1

� cannot be faithfully recovered
�
from the code f�x1 �, and information will be lost. Conse-
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quently, R� is the per letter information contained in the mes-
sage, and is closely related to the information entropy, as will
be shown shortly.

2. Entropy, definition and properties

A source X may also be considered as a stochastic pro-
cess, or process, producing a sequence of outputs, or a mes-
sage, controlled by the source’s probability law. The source’s
probability law dictates the probability of seeing any given
message segment xi

j for any 1� i� j as the output of the
source. Let Xi be a random variable representing the source
output at time i, Xi

j denote �Xi ,Xi+1 , . . . ,Xj�, i� j, and A an
alphabet whose size is �A�. A particular sample output of the
random variable is denoted by the lower case letter corre-
sponding to the random variable, e.g., xi

j. Let p�x� denote
Pr�X=x�.

Sources where all joint probability distributions are time
invariant are called stationary. That is, for every possible
subsequence xi

i+�−1 of length ��1, p�xi
i+�−1� remains the

same for all i. Sources where all realizations of the output
possess the same statistical properties are called ergodic. If
the source X is a stationary ergodic source, it behaves in the
same manner in a statistical sense every time the source is
started, and also at any given time during the operation.
Thus, for a stationary ergodic source, the statistical proper-
ties of one long output can be generalized to the properties of
the source itself.

A source has memory if the ith output Xi is not statisti-
cally independent of all past outputs. If the current output
depends only on the previous k outputs, the source is a
kth-order Markov source.2 A Markov source where it is pos-
sible to reach any state from any state with positive probabil-
ity in a finite number of steps is said to be irreducible �p. 61,
Cover and Thomas, 1991�. The Doeblin condition3 describes
a broader class of sources that is less restrictive than Markov
sources. The Doeblin condition limits the largest influence
that the past may have on the present, while still allowing the
influence of the previous outputs from arbitrarily far in the
past. Informally, a source satisfying the Doeblin condition
blurs the memory of the past output after k symbols; no
matter what the output sequence has been up until the current
time, all outputs are possible again k symbols into the future.
Any irreducible Markov source of a finite order satisfies the
Doeblin condition. Also, the Doeblin condition is satisfied if
there is an arbitrarily small positive probability of observa-
tion error. Thus, almost any practical experimental observa-
tion of a stationary source satisfies this condition.

The classes of common information sources can be or-
ganized in a list of increasingly strong restrictions, and each
class in this list includes all of the subsequent classes as a
subset. This list of classes is: �1� Sources which are not sta-
tionary nor ergodic, but are governed by a consistent prob-
ability law; �2� stationary ergodic sources; �3� stationary er-
godic sources that satisfy the Doeblin condition; �4�
stationary ergodic irreducible Markov sources of finite order;
and �5� independently identically distributed �i.i.d.� sources.
Classes appearing later in this list are more restricted in their

applicability than earlier ones due to the strong assumptions
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imposed on the sources in the later class. Note that within the
Markov sources, a lower-order Markov source is more re-
strictive than a higher-order one.

The following discussion of entropy and related source
properties summarizes the cumulative contributions of nu-
merous authors. In the interest of brevity, only the strongest
results are presented below. The Appendix outlines the pro-
gression of these results. Except where noted otherwise,
these properties hold for each source class described in the
list above.

Definition 2 The entropy of a source is defined as

H�X 1
�� = lim

�→�
−

1

�	
x1

�

p�x1
��log p�x1

�� , �4�

where the summation is over every possible subsequence of
length �. Throughout this paper, log x means log2 x, and
0 log 0 is 0. The units of entropy are bits. The entropy of
a source is the minimum average number of bits per sym-
bol necessary to encode its messages.

Theorem 2 �Entropy as the coding bound�. In the limit,
the coding rate of an asymptotically optimal encoder meets
the entropy of the source. That is,

Ropt�x1
�� = H�X 1

��, with probability one. �5�

This theorem allows another interpretation: The entropy
of a source represents the average amount of information per
symbol that the source transmits in its messages over a long
symbol sequence. Given two messages of length � from al-
phabet A, x1

� and y1
�, if the encoding of x1

� is shorter than that
of y1

�, i.e., � fopt�x1
���� � fopt�y1

���, then x1
� is said to be more

compressible than y1
�. Redundancy in a message can be mea-

sured in terms of entropy, and interpreted in terms of com-
pressibility, in light of Theorem 2. A lower entropy of a
source implies that the message from the source is more
compressible and more redundant. Consequently, entropy is
a measure of the average redundancy of the messages from a
source.

From the receiver’s point of view, entropy is the average
measure of a priori uncertainty about each successive letter
of the source output, and hence the amount of information
received equals the amount of uncertainty removed. Equiva-
lently, since a source with little uncertainty is very predict-
able, entropy decreases with increased predictability.

MacKay �1972� observed “one has no prior reason to
regard H as a more biologically significant measure of the
information received by that organism than, say, the total
number or duration of the signals exchanged,” �MacKay,
1972, p. 11�. However, a properly obtained estimate or upper
bound on H is an upper bound of the information received by
an organism. Moreover, recent advances in information
theory offer new approaches to biological problems beyond
the limited methods that MacKay considered.

Entropy is also a measure of the structural constraints
and complexity of a source.

Property 1 Additional constraints in the structure of an

information source decrease the entropy of that source.
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The size of the alphabet restricts the maximum possible
entropy to be Hmax=log�A�, which can be attained if and only
if each output symbol is independent and uniformly distrib-
uted. For a source with entropy Hmax=log�A�, there are
�A��=2�Hmax possible sequences of length � which may be
observed, each with equal probability �A�−�=2−�Hmax. If the
output symbols are not independent and uniform, i.e., the
source has structural constraints, the entropy H is less than
Hmax. As noted earlier, decreased source entropy implies in-
creased redundancy in the output streams, and this redun-
dancy is quantified as

� = �Hmax − H�/Hmax, �6�

where Hmax is computed for the same alphabet size as the
source �Shannon, 1948�. Thus, the redundancy � is be-
tween 0 and 1. Structural constraints imply that some se-
quences are much more probable than others. The highly
probable subset of sequences is called the entropy-typical
set, and the probability of the other atypical output sequences
appearing is very small. This is formally represented by the
following theorem.

Theorem 3 �Entropy theorem�.

lim
�→�

−
1

�
log p�x1

�� = H with probability 1. �7�

Note that this theorem concerns a long individual sequence,
and not the average of all sequences. Rearranging Eq. �7�
leads to:

Theorem 4 �Typical set�. For a positive integer � and �
�0, define the entropy-typical set to be

T ��,�� = �x1
�:2−��H+�� � p�x1

�� � 2−��H−��� . �8�

Then, there is a sequence length ����� such that for all �
������,

Pr�T ��,��� � 1 − � �9�

and

�1 − ��2�H−��� � �T ��,��� � 2�H+���. �10�

That is, for a small � and sufficiently large �: �1� Almost all
of the observed sequences belong to the typical set �Eq. �9��;
�2� all sequences in the typical set are roughly equally likely
to occur with probability close to 2−H� �Eq. �8��; and �3� the
size of the typical set is approximately 2H� �Eq. �10��. The
atypical set T c�� ,��= �x1

� :x1
��T �� ,��� contains sequences

that are improbable or do not occur. When H is significantly
smaller than Hmax, the set of the typical sequences is only
a tiny subset of the set of all possible sequences, A�, and
the size of the atypical set �T c�� ,��� is very large. Summa-
rizing this theorem:

Property 2 Stationary ergodic sources with entropy H
typically produce 2H� approximately equiprobable sequences
of length �.

Therefore, for a given message length, a source with a
larger entropy produces a greater variety of alternative mes-

sages than a source with a smaller entropy. Note that this
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statement concerns only the entropy H, and that the alphabet
size �A� is not a direct factor in the number of typical mes-
sages.

Example For the English alphabet of 26 letters plus a
space ��A�=27�, consider two processes producing very long
sequences. The first source is a monkey typing on a keyboard
such that each letter is equally probable, and the second
source is an English writer. We regard both of these as infor-
mation sources, and take subsequences of an arbitrarily cho-
sen length 150 from each source output, and call each of
them a sentence. The monkey process has the maximum en-
tropy possible for the alphabet size, H=Hmax=log 27

4.755 bits, producing all 27150=2150 log 27
5�10214 pos-
sible sentences with equal probability. This is the size of the
typical set for the “monkey typing” source. Cover and King
�1978� estimated the source entropy of English to be ap-
proximately 1.3 bits. Thus, English writers typically produce
21.3�150
5�1058 sentences. The size of this typical set is
2�log 27−1.3�150
10156 times smaller than the typical set of the
monkey process, which produces all possible sentences. The
output of the English writer has structural constraints in the
form of lexicographical and grammatical rules and the con-
text of the story, limiting the size of the English typical set to
be a tiny portion of the size of the monkey typing source
typical set.

These interpretations of entropy provide the basis for
studying the structure of humpback whale songs. The direct
application of Eq. �4� for entropy estimation is difficult for
practical problems with a finite set of observations, because
the true probability law for the sequence of the units in
humpback song is not known. Instead, p�·� must be estimated
from the available observations, which are necessarily finite
in length. One common method is to use p̂�·�, the observed
relative frequencies of events, or the empirical distribution.
The true distribution and empirical distribution are concep-
tually different quantities, and without a priori knowledge of
the source, there is no guarantee that the empirical distribu-
tion p̂�·� from an observed output sequence is within a given
tolerance of the true probability p�·�.

As in any model-based estimation problem, the estima-
tion of the source entropy generally requires: �1� Establish-
ing and justifying a stochastic model for the source, �2� es-
timating the model parameters �the probability mass
function�, and then �3� estimating the entropy of the source.
Two popular source models used for Step �1� are the i.i.d.
model and the empirical Markov model. These models are
often assumed under speculation or without justification in
the study of animal communications. For example, Beecher
�1989� used i.i.d. entropy estimates as a measure of the in-
formation embedded in signature calls, implicitly assuming
that each call is statistically independent and identically dis-
tributed. Gentner and Hulse �1998� used Markov models of
varying order with no justification that the sources analyzed
fit these models. Another approach to estimation problems is
the use of model-free, or nonparametric, methods. In the
nonparametric approach, the selection of a model is unnec-
essary, and therefore the approach is more universally appli-
cable.
Instead of justifying a specific model, we chose to per-
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form the entropy estimation with three methods: �1� Estima-
tion with an i.i.d. model; �2� estimation with an empirical
Markov model of order 1; and �3� a nonparametric method.
Each model’s ability to approximate the structure embodied
in the humpback songs can be assessed from the resulting
entropy estimates using Property 3 �Sec. I B 4�.

3. Model-based entropy estimation

The entropy of the i.i.d. and Markov models can be sim-
plified from the general expression in Eq. �4�. The model-
based estimators result from substituting the observed em-
pirical distributions p̂�·� for the unknown probability mass
function �PMF�.

Definition 3 �i.i.d. model�. The source entropy of an i.i.d.
process is estimated from a sample sequence x1

� of length �
by

Ĥ0 = − 	
a�Â

p̂�a�log p̂�a� , �11�

where the empirical distribution of the individual letters is

p̂�a� =
��i:xi = a,i � �1,����

�
, �12�

and the estimated alphabet Â is

Â = �xi:i � �1,��� . �13�

That is, the empirical distribution for a letter p̂�a� is the
number of appearances of that letter in the sequence divided

by the length of the sequence, and the estimated alphabet Â
is the set of all symbols appearing in the data sequence. For
example, for the sequence segment of length �=19 in Fig. 1,
p̂�A�=7/19, p̂�B�=7/19, and p̂�C�=5/19, for the i.i.d.
model. The resulting entropy estimate for this unrealisti-

cally short example sequence would be Ĥ0
1.57 bits.
This example is meant for illustrative purposes only, and

in practice Ĥ0 should only be computed for much longer
sequences.

The i.i.d. model ignores all statistical dependencies be-
tween occurrences of letters by treating them as condition-
ally independent, and assumes that they are drawn from an
identical distribution. The presence of memory in a statistical

FIG. 1. Example of the sliding window match length. A section of the
sample sequence with current index i and window of size n=10 are shown.
The match length at this index is Li�10�=max�3,3 ,2�=3. Note that the
longer match of ABAC with length 4 is not counted because it begins before
the start of the window.
sense means that the present state or output is at least par-
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tially a consequence of the past states. The i.i.d. model fails
to represent any effect of memory; hence, it is sometimes
called the stationary memoryless model. Such a model is
often used as a measure of individual divergence in ecology
�Good, 1953; Patil and Taillie, 1982; Peet, 1974�. Equation
�12� relies on the strong law of large numbers to ensure that
the empirical distribution, p̂�·�, converges to the true distri-
bution with probability one as �→�. Therefore, the i.i.d.

condition is crucial for this model to be valid, i.e., for Ĥ0 to
converge to the true H.

The simplest source model with memory is the first-
order Markov model, where only the immediately previous
output influences the current output through the conditional
probability law.

Definition 4 �Markov model�. The source entropy of a
Markov model of order k=1 is estimated from a sample se-
quence by

Ĥ1 = − 	
a1,a2�Â

p̂�a1,a2�log p̂�a2�a1� , �14�

=− 	
a1,a2�Â

p̂�a1,a2�log p̂�a1,a2� − Ĥ0, �15�

where the empirical distribution of the conditional and joint
probability are obtained by counting the occurrences of each
pattern:

p̂�a2�a1� =
��i:xi−1 = a1,xi = a2,i � �2,����

��i:xi−1 = a1,i � �2,����
, �16�

and

p̂�a1,a2� =
��i:xi−1 = a1,xi = a2,i � �2,����

� − 1
. �17�

Equation �16� is equivalent to counting what fraction of
the appearances of a1 are immediately followed by a2. For
the example in Fig. 1, p̂�B �A�=5/7, p̂�C �C�=2/5, but
p̂�A �B�=5/6 since we cannot count the final B because we
do not know what symbol follows. Equation �17� is equiva-
lent to counting each possible pair of letters, then dividing by
�−1, the total number of pairs. Referring to Fig. 1,
p̂�A,B�=5/18, p̂�B,A�=5/18, p̂�A,C�=2/18, p̂�C,A�
=1/18, etc¼. Substituting appropriate empirical distribu-
tions for this unrealistically short segment yields the estimate

Ĥ1
0.98. Again, this example is only meant for illustration,

and in practice Ĥ1 should only be computed for much longer
sequences. More generally, a kth-order Markov model re-
quires estimates of the joint and conditional probabilities
from observed blocks of length k+1.

Equations �16� and �17� rely on the ergodic theorem to
ensure that the empirical joint distribution of the overlapping
blocks of length 2 contained in a single length-� block
sample sequence converge to the true distribution with prob-
ability one as �→�. It is crucial for the validity of this
model that the stationary ergodic and Markov properties be
maintained throughout the entire sample sequence. If these

assumptions are not valid, the resulting entropy estimates
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obtained by using this model may be significantly flawed.
Secs. I B 5 and I B 6 discuss additional difficulties in the
practical application of Markov model entropy estimates
even when all the model assumptions are valid.

4. Model-free entropy estimation

As noted in Sec. I B 1, the encoder f is a data compres-
sor; an encoder compresses the sequence x1

� to a code of
length � f �x1

��� bits, which preserves all of the information in
the original sequence and is usually more compact than the
original sequence. A universal data compressor is an encoder
that does not require a priori knowledge of the source’s
probability law �Kolmogorov, 1965�. An asymptotically op-
timal data compressor is one where the average code length
approaches entropy as the sequence length increases �Eq.
�5��. Ziv and Lempel �1977� developed the first universal and
asymptotically optimal data compression algorithm, called
LZ’77 �Wyner and Wyner, 1994; Ziv and Lempel, 1978a�.
Theoretically, one can use LZ’77 as the encoder f�·� in Eq. �1�
with a long observed sequence and then consider the result-
ing code rate Rf �x1

�� as an estimate of the entropy of the
source. In practice, this estimator converges to H too slowly
in the sequence length � to be useful in most situations. No
commonly employed asymptotically optimal universal data
compression algorithm converged quickly enough to be use-
ful for the data lengths available in this study.

The nonparametric entropy estimator presented in this
section resulted from a performance analysis of the LZ’77

encoder. This estimator provides reliable and robust entropy
estimates, and converges to the true entropy H much faster
than the LZ’77 approach described in the previous paragraph.
Even if the source is nonstationary, or the sample sequence is
not long enough to achieve asymptotic convergence, the re-
sulting entropy estimates are an upper bound on the source
entropy, and thus is an upper bound on the amount of infor-
mation transmitted �Theorem 2�.

The nonparametric entropy estimate is computed from
the match length statistics.

Definition 5 �Match length�. Match length Li�n� is de-
fined for a fixed window size n and current sequence index i
by

Li�n� = max�L:xi
i+L−1 = xi−k

i−k+L−1,k � �1,n�� . �18�

Figure 1 illustrates an example of computing the match
length. Consider the sequence of symbols shown. The match
length is the length of the longest string starting at the
present sample xi that matches a string which begins within
the window of n symbols immediately preceding xi. In Fig.
1, n=10, and the longest match Li�10�=max�3,3 ,2�=3.

Theorem 5 For stationary ergodic sources, the relation
between the match length and source entropy is

lim
n→�

Li�n�
log n

=
1

H
, with probability one. �19�

Note that this limit concerns the behavior of the match length
at a fixed sequence index i as the window length tends to
infinity. A similar result holds for the average match length

over the entire sequence.
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Theorem 6 For stationary ergodic sources with finite
memory,

E�Li�n��
log n

=
1

H
+

O�1�
log n

�20�

for any i and a fixed n. O�1� represents some constant that
does not grow with n. A very similar result holds for sources
satisfying the Doeblin condition. Thus, for almost any ex-
perimental data, this theorem states that the expected match
length is roughly inversely proportional to the entropy, with
a vanishing constant, O�1� / log n. Replacing the expectation
in Eq. �20� with the sample mean over the observed se-
quence produces the sliding window match length
�SWML� entropy estimator.

Definition 6 �SWML entropy estimator�. The SWML es-
timator for the entropy of a stationary ergodic process satis-
fying the Doeblin condition is

ĤSW�n� = ��	
i=3

�
Li�ni��
log ni�

�−1

, �21�

where

ni� = min�i − 1,n� . �22�

where n is specified window size and ni� is the effective
window size. This estimator is asymptotically unbiased as
n→� with probability one. Informally, ni� is introduced to
alleviate transient issues at the start of the data sequence
when the index i�n.

The SWML estimator has several desirable properties.
First, the SWML estimator is applicable to a broader class of
sources than the model-based estimators, i.e., Classes �2�–�5�
of the list in Sec. I B 2, compared to only Classes �4� and �5�
for the Markov model-based estimators, and only Class �5�
for the i.i.d. model estimator. Second, the SWML is robust to
considerable departures from the assumptions of Eq. �21�.
When these assumptions are violated, ĤSW is still a valid

upper bound on the entropy. Third, ĤSW converges rapidly in
sequence length �, producing a good entropy estimate from a
relatively short data sequence. Fourth, and finally, varying
the window size n provides a means to trade off between bias
and adaptability to nonstationary sources, as Sec. I B 7 will
address.

Despite a superficial similarity, there is no theoretical
link between the SWML window size and the Markov model
order, or between the SWML estimator and the Markov
model. Although the SWML uses a fixed length portion of
the immediately previous output, it does not estimate the
empirical distributions of Eqs. �16� and �17� for the Markov
estimator, Eq. �15�.

The ability of the i.i.d. and Markov models to represent
the structure of a song can be evaluated by applying each of
the three entropy estimators to an observed sequence of
units.

Property 3 When comparing two models for a source,
the model which most accurately reflects the structural con-
straints of the source will produce a lower entropy estimate

for the source’s output.
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Consequently, one can use the entropy estimates pro-
duced by two models to assess which of the models better
fits the structural constraints embodied by a sample se-
quence. The model producing the lower entropy estimate is a
better fit to the constraints of the source. An important caveat
to this claim is that care must be taken to ensure that the
Markov model estimates are accurate, and not artificially
low, as discussed in Sec. I B 5.

Note that the SWML estimator �Eq. �21�� has the least
restrictive assumptions of the three methods, and is therefore
appropriate for the widest class of sources. Ideally, in the
absence of bias, the SWML estimator should yield the small-
est entropy estimate of the three estimators. The exception to
this statement is if the source is actually an i.i.d. or Markov
source. In this case, the SWML entropy estimate should
roughly equal the i.i.d. or Markov entropy estimate. If the
SWML and i.i.d. or Markov entropy estimates are roughly
equal, this indicates that the i.i.d. or Markov model embodies
all of the structural constraints apparent in the sample se-
quence analyzed.

5. Limitations on Markov models

Numerous animal communication studies have em-
ployed Markov models, or transition probability analysis
�c.f., Gentner and Hulse, 1998; MacKay, 1972; McCowan et
al., 1999; Slater, 1973�. The empirical application of Markov
models has clear limitations on the model order as a function
of observed sample length. This section reviews these short-
comings to illustrate the advantages of nonparametric en-
tropy estimation techniques, such as the SWML estimator.

In theory, increasing the order of an empirical Markov
model improves its ability to approximate an unknown
source. In practice, the finite available observation length �
places a limit on the model order. The sequence length re-
quired to obtain a reliable estimate of the PMF increases
exponentially in model order. Entropy estimates are sensitive
to inaccuracies in the PMF. Markov models with improperly
high orders will likely not see all of the transitions that the
true source produces, or will see them with an incorrect fre-
quency. Such a model is said to overfit the data, and gener-
ally produces a deceptively low and inaccurate entropy esti-
mate. This is particularly perilous when these erroneously
low entropy estimates are interpreted using Property 3 of
Sec. I B 4. The low entropy estimates may lead one to con-
clude incorrectly that the model is a better fit than it actually
is.

How long must a sample sequence be to estimate en-
tropy reliably from a Markov model? The data must be suf-
ficiently long to obtain accurate estimates of all the prob-
abilities in Eqs. �12�, �16�, and �17�, or their higher-order
analogs. A kth-order Markov model contains �A�k+1 param-
eters, which are the individual transition probabilities. Con-
sequently, the data observed must exceed �A�k+1 symbols,
and preferably �A�k+2. According to Theorem 4, a Markov
model of order k and entropy H typically produces roughly
2H�k+1� blocks of length �k+1�. If the model order k is large
enough such that �−k�2H�k+1�, some typical blocks do not
occur, and therefore the empirical distribution and the en-

tropy estimate are fatally flawed. �Marton and Shields, 1994,
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1996�. The Markov order k as a function of data length �
must grow more slowly than c log��� /H for the Markov en-
tropy estimate to converge to the true entropy as � goes to
infinity �Marton and Shields, 1994, 1996�. These results im-
ply that ��2H�k+1� is a necessary, though not sufficient, con-
dition for accurate entropy estimation. Lacking prior infor-
mation about the source, we must assume the most
conservative case that H=Hmax=log�A� and ��2�k+1�log�A�, or
�A��k+1�. This length is an absolute minimum. Preferably, the
data length should satisfy �� �A��k+2�, to provide accurate
entropy estimates for most sources. The �� �A��k+1� require-
ment may be insufficient unless there is substantial prior evi-
dence that the source’s PMF precludes many of the �A�k+1

possible transitions.
The sample length required by these conditions is often

onerous. For example, in typical humpback song with �A�

20, even a first-order Markov model requires at least 400–
8000 units of song, and a second-order model requires at
least 8000–160,000 units. At an average singing rate of
2.5 s /unit, the second-order Markov model requires roughly
5.5 to 110 h of uninterrupted recordings of a single singing
whale. For this reason, we limited our Markov model analy-
sis to first order.4

The i.i.d. and Markov estimators exhibit a negative bias
even when the sample length requirements are satisfied. Sec-
tion I B 6 presents results on correcting this bias in the en-
tropy estimates. This correction must not be confused with
the underestimation of entropy that occurs when Markov
models overfit data sequences of insufficient length. Neither
bias correction nor bootstrapping approaches can overcome
the difficulties of overfitting. Using Property 3 to interpret
the low entropy estimates produced by overfitting Markov
models results in incorrect conclusions about the appropri-
ateness of higher-order Markov models. Consequently, em-
pirical Markov models have limited viability in entropy es-
timation. The combined difficulties of the risk of
misinterpreting the entropy estimates of overfitted models
and the requirement of unrealistically long data sequences
argue strongly against the higher-order Markov model analy-
sis of empirical data. One exception to this conclusion in-
volves those rare instances where the source is known a pri-
ori to be a Markov source, and sufficient data are available.

In light of these strongly worded cautions, how did Sh-
annon �1951� successfully estimate the entropy of printed
English? Shannon’s insight was to avoid estimating the joint
probabilities of the sample data set. Instead, he estimated the
error probabilities of human subjects predicting the next let-
ter in an English text from the previous letters. Shannon then
used the error probablities to estimate upper and lower
bounds on the entropy of English. Subsequent experiments
modified the guessing experiment to a gambling game to
obtain improved entropy estimates for English �Cover and
King, 1978; Miller, 1954; Ch. 6 of Cover and Thomas, 1991;
Levitin and Reingold, 1994�. Human-based techniques
�Cover and King, 1978; Shanon, 1951� produce lower en-
tropy estimates than the SWML estimator �Kontoyiannis,
1997� applied to the same text. Humans thus find less uncer-

tainty in the text than mathematical algorithms. Similarly, it
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is possible that humpback whales experience less uncertainty
about the sequence of units in a song than the SWML esti-
mator indicates.

Shannon’s experiment is often interpreted to support the
argument that English can be statistically modeled arbitrarily
well by increasing the order of a Markov model. This view
was challenged by Chomsky �1956� and Miller and Chom-
sky �1963�. They concluded that: �1� Finite-state Markov
models are incapable of representing the recursive hierarchi-
cal structures of English grammar; �2� successively higher-
order Markov model approximations to English do not con-
verge to true English grammar; and �3� the number of
parameters required by higher-order Markov models to re-
flect grammatical constraints would be immense even if they
did model English accurately.

6. Statistical properties of entropy estimators

Interpreting the entropy estimates discussed in Secs.
I B 3 and I B 4 requires an understanding of the estimators’
statistical properties, such as their bias5 and confidence
bounds. This section assumes that the data sequences are
sufficiently long for the model-based methods, precluding
the degraded entropy estimates discussed in the previous sec-
tion. Even when the observed data sequence is sufficiently
long, the entropy estimators are negatively biased due to
Jensen’s Inequality �c.f., Eq. �9� of Wyner et al., 1998; Ch. 2
of Cover and Thomas, 1991�.

Theorem 7 �Basharin, 1959�. The bias of the i.i.d. esti-
mator for a sample sequence x1

� from an i.i.d. source is

E�Ĥ0� − H = −
�A� − 1

2�
log e +

O�1�
�2 . �23�

If � is sufficiently large, the term O�1� /�2 may be neglected
to obtain a bias-corrected estimate.

Definition 7 �bias-corrected i.i.d. estimator�.

H0� = Ĥ0 + 0.72
�Â� − 1

�
. �24�

Similarly, the first-order Markov model entropy estimator
can be bias corrected as:

Definition 8 �bias-corrected first-order Markov estima-
tor�.

Ĥ1� = Ĥ1 + 0.72
�D̂� − �Â�

�
, �25�

where the number of all observed units is �Â�, with Â as
defined in Eq. �13�, and the number of all observed digram

transitions is �D̂�. If �D̂� is less than the true value, the nega-

tive bias of Ĥ1 will be only partially corrected, and there will
be some residual bias. Basharin �1959� also provides an ex-

pression for the variance of Ĥ0, but this requires knowledge
of the source PMF, so is not applicable to empirical data
analysis.

The bias of the SWML estimator cannot be analytically
formulated like the biases of the model-based estimators, al-

though it is known to be a positive bias which is O�1� / log n.
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Thus, the SWML estimator’s bias vanishes slowly with in-
creasing window size n. Correcting the bias of the SWML
estimator with a bootstrap technique is possible if replicate
sample sequences can be generated having the same statistics
as the real source. For example, Wyner et al. �1998� em-
ployed a Markov-based bootstrapping bias correction for the
SWML estimator when estimating the entropy of DNA.
However, in most animal communication research, including
the present study, there is no a priori justification for assum-
ing that the source follows a Markov model, and therefore it
is inappropriate to correct the positive bias of the SWML
entropy estimate with Wyner et al.’s �1998� technique.

7. Stationarity revisited

As Slater �1973� and MacKay �1972� argued, the pro-
cesses producing animal vocalizations are not likely to be
stationary, which limits the applicability of Markov models.
Determining whether an unknown source is nonstationary is
not always simple. The autocorrelation technique introduced
in Sec. II C provides an indication of the stability of the
time-local sequence statistics. If the source is stationary, the
correlation values computed for the same lag in different
segments of the sequence should be very similar. If large
deviations are observed in the correlation estimates, the
source is likely to be nonstationary. The statistical properties
of many nonstationary sources change so slowly that a short
subsequence of the observed data can be regarded as taken
from a stationary source; such a source is called locally sta-
tionary. The i.i.d. and Markov models are strictly limited to
stationary sources, and thus produce inaccurate entropy esti-
mates for locally stationary sources. In contrast, the coding
bound argument �Eqs. �2�, �3�, and �5�� justifies the use of the
SWML estimator as a practical estimator for nonstationary
processes, if the estimate is understood as an upper bound on
the source entropy. It is desirable for this upper bound to be
as tight as possible. To this end, the SWML estimator em-
ploys the following heuristic adaptation for the window size
n.

Consider the effect of increasing or decreasing the
SWML window size for a globally nonstationary but locally
stationary source. Decreasing the window size makes the
subsequence xi−n

i−1 within the window more likely to follow
the same statistics as the matching sequence going forward
from xi. Unfortunately, decreasing the window size also in-

creases the positive bias of ĤSW, as can be seen from Eq.
�20�. Increasing the window size will reduce this bias until
the window size n exceeds the limits of local stationarity, and
the windowed sequence xi−n

i−1 no longer has the same statistics
as the matching sequence xi

�. When the statistics of xi−n
i−1 and

xi
� differ, the observed match lengths are less than they

would be for a stationary source of the same entropy. Refer-
ring to Eq. �21� reveals that decreasing the match length

Li�n� increases ĤSW. Thus, for a locally stationary source,
choosing n to be either too small or too large will increase

the positive bias of ĤSW. To balance these competing de-

mands, ĤSW is chosen to be the smallest entropy estimate

obtained over a set of allowable window lengths I, i.e.,
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ĤSW = min
n�I

ĤSW�n� . �26�

Thus, the SWML estimator can operate even when the
source is not stationary, at the small cost of an increased
positive bias.

II. METHODS

The 16 songs analyzed were recorded off the coast of
Hawaii from winter 1976 to spring 1978. These recordings of
solo whales singing were originally analyzed in Payne et al.
�1983�. Each tape recording began at an arbitrary time during
the sequence of units, and finished when the tape ended or
the signal faded away. The longest recorded segments in
this data set were roughly 45 min, and contained
1000 to 1200 units. Songs shorter than 300 units were re-
jected because they are insufficiently long for accurate en-
tropy estimates.

The analysis method consists of two steps. First, the
audio recordings of the humpback whale songs are converted
into a sequence of symbols, where each symbol represents a
distinct type of unit. Second, the entropy and correlation
properties of the symbol sequences are estimated. Interpret-
ing the entropy estimates’ implications for the song structure
requires two hypothesis tests. The confidence intervals used
for these tests are presented in this section.

A. Classification

Classification necessarily causes an argument: “¼there
is no guarantee that we will draw the perceptual boundaries
in the same place as our study animals” �Tyack, 1998�. Ide-
ally, “any human- or computer-generated categorization of
vocalizations will need to be validated by testing with the
species producing the calls” �Tyack, 1998�. Such validating
experiments are extremely difficult in the case of humpback
songs, because all of the study animals are wild and very
large, the units change over time, and the song structure also
evolves. Furthermore, the perceptual boundaries of a specific
animal may vary over time or depend on the behavioral or
communicative context. These boundaries may also vary
among the study population. Therefore, one cannot a priori
assume that there is only one correct classification. The re-
sults presented in Sec. III are reassuringly robust to varia-
tions between different classifications.

Janik �1999� compared classification methods using hu-
man observers with computer-based methods. He remarked
that the major disadvantages of human observer classifica-
tion are bias and lack of reproducibility, but these can be
mitigated and minimized by using several observers. Addi-
tionally, he noted that the design of automated classifiers
must select both appropriate feature parameters and appro-
priate weightings for these features. In the current study, two
human observers and a computer-based classifier were used
to supplement each other’s shortcomings, and each classifi-
cation result was analyzed separately. The entire spectrogram
of each unit was the input to an unsupervised neural network

classifier to avoid the issue of parameter selection.
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In an analogous problem, human speech recognition sys-
tems, performance improves when the choice of the fre-
quency scale is based on known properties of auditory per-
ception �Jankowski et al., 1995�. Although little is
specifically known about the hearing of humpback whales,
the mammalian ear in general can be modeled as a bank of
constant-Q bandpass filters called the cochlea filter �Pitton et
al., 1996�. Also, humpback whale hearing appears to be low-
frequency oriented, roughly matching their vocalization
range of 20 Hz to a few kilohertz �Ketten, 1997�. For these
reasons, constant-Q �logarithmic� frequency-scale spectro-
grams form the input to the classifiers employed, rather than
the more conventional constant bandwidth �linear�
frequency-scale spectrogram.

The units in each song were classified using two meth-
ods: �1� Manual classification by two human individuals; and
�2� automatic classification. Each of the roughly 20–45 min
long analog recordings was digitized into a computer using a
sampling frequency of 8000 Hz and 16-bit quantization. This
digitized signal was used to produce the spectrograms used
by both the automated classifier and the humans.

The two human-classified versions were independently
produced by the individuals listening to the recorded song
with the aid of printed spectrograms. The human classifiers
listened to the song as many times as desired, and classified
the units by writing the corresponding symbols onto the
printed spectrograms. The spectrograms were computed us-
ing a polyphase filterbank and covered 30 Hz to 2700 Hz in
80 logarithmically spaced frequency bins and 200 time bins
each representing 64 ms. The symbol sequences were typed
into a computer file and doublechecked before further pro-
cessing. The human classifiers were instructed to attach
greater importance to the aural qualities of the sound than the
printed spectrogram, whereas the automated classification
was solely based on the spectrogram. The entropy estimators
were applied separately to the symbol sequences produced
by each classifier

The rest of this section describes the details of the auto-
mated classification. Figure 2 illustrates the automated clas-
sification and analysis system in block diagram form. An
unpublished nonlinear method �Suzuki, in preparation� de-
tected the signal of the individual units within the recording.
The polyphase filterbank computed the spectrograms of these
individual units, along with a short sample of the background
noise that preceded and followed the unit.

Prior to classification, each unit’s spectrogram was pre-
processed as follows: �1� The spectrogram was centered

6

FIG. 2. Block diagram of the automated classifier analysis system for the
humpback song.
within the 12.8 s time window, with any time bins before or
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after the signal zero filled; �2� all bins were normalized by
the maximum bin; �3� all bins below a threshold were set to
zero; �4� soft clipping was applied to all bins above a thresh-
old; and �5� the entire spectrogram was normalized for unit
energy. This preprocessing improved the performance of the
classification over the range of signal amplitudes and back-
ground noise during the song. The processed spectrograms of
the units were the inputs to the automated classifier consist-
ing of a sequence of two self-organizing maps �SOMs� �Ko-
honen, 2001�. This classifier assigned a letter to each unit’s
individual spectrogram, where �ideally� each distinct letter
represented a group of similar spectrograms. The sequences
of units in the song recording were thus mapped to a symbol
sequence. The work of Walker et al. �1996� strongly influ-
enced the design of our classifier.

The SOM classifier does not require an a priori decision
regarding the alphabet size �A�, but only sets the maximum
allowable �A�. This is a distinct advantage over classifiers
such as the k-means clustering algorithm �Linde et al., 1980�
or a learning vector quantizer �LVQ� �Kohonen, 2001; Chap.
10 of Duda et al., 2001�, since it avoids a major subjective
decision about the exact number of classes present in the
data. This advantage led us to use the SOM for our classifier
in spite of Kohonen’s advice advocating LVQs over SOMs
for classification and decision tasks �Kohonen, 2001�.

The first-stage SOM in the classifier groups units with
similar spectrograms, implementing a common SOM topo-
logical feature map �Haykin, 1999; Kohonen, 2001�. This
stage is organized as a relatively large two-dimensional lat-
tice with a large slowly decaying topological neighborhood.
The output of this first stage is a matrix of similarity values
between the input spectrogram and each neuron’s trained
synaptic weight. The second-stage SOM takes the similarity
matrix for a unit as its input and produces a discrete symbol
in A as its output. The second-stage SOM is organized as a
one-dimensional lattice whose length is determined by the
maximum allowed value for the alphabet size �A�. This SOM
has a small, rapidly decaying neighborhood suitable for clas-
sification.

The classifier was independently trained for each song
processed. Both SOMs were trained using spectrograms of
randomly chosen units from the song. For the first-stage
SOM, each unit was equally likely to be chosen as the input.
After the first-stage SOM was trained and the weights were
fixed, the second-stage SOM was trained twice, using the
similarity matrices output by the first SOM for randomly
chosen units. For the first training run of the second-stage
SOM, each unit spectrogram was equiprobable. For the sec-
ond training run of the second-stage SOM, each output letter
was chosen equiprobably, and then an individual spectro-
gram for an instance of that letter was chosen equiprobably
from all spectrograms classified as that letter during the first
run. Therefore, during the second training run, spectrograms
belonging to infrequently appearing units were chosen more
frequently than the spectrogram of common units, but all
possible classifier output letters received approximately the
same number of training iterations.

Both SOMs were trained with the standard adaptation

techniques found in Kohonen �2001� and Haykin �1999�,
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with typical parameters given in Table I using the notation of
Chapter 9 of Haykin �1996�. The topological neighborhood
function was a Gaussian function as suggested in Haykin
�1999�. The only modification from the standard SOM neu-
ron update algorithm was that, for the first-stage SOM, the
spectrogram matrix could be shifted by up to 	t bins in time
and 	f bins in frequency to determine which neuron’s
weights were the most similar to the current spectrogram.
For the first 2000 iterations of training, the neurons’ weights
were then updated using the unshifted original spectrogram.
After 2000 iterations, the neurons’ weights were updated us-
ing the shifted spectrogram which gave the best fit to the
optimal neuron. For the purpose of these shifts, both the
spectrogram and the neuron weights were considered to be
zero outside their defined index range. Table I also includes
typical values for 	t and 	f .

Once the SOMs for both stages of the classifier con-
verged, the spectrograms of the units were processed again to
produce the automated classifier’s symbol sequence for that
song.

B. Information theory analysis

In order to determine whether the i.i.d. and Markov
models accurately represented the structure embodied by
each symbolized humpback song, the model-based entropy
estimates and the SWML entropy estimate were used to test
two hypotheses. The first hypothesis is that H0�H1, with the
alternate hypothesis being H0�H1. The second hypothesis is
that H1�HSW, with the alternate hypothesis being H1

�HSW. Decisions of these tests are interpreted with Property
3 of Sec. I B 4.

The two hypotheses are tested for the significance level
of 0.05 using the following bootstrap technique. For the first
hypothesis �H0�H1�, 1000 independent bootstrap sequences
are generated for each song using an i.i.d. source whose PMF
is the empirically observed distribution for the song. Each of
these bootstrap sequences has the same length as the original
song sequence. The bootstrap sequences are used to obtain
1000 first-order Markov entropy estimates. The 50th lowest
of these entropy estimates is chosen as the bound on the
one-tailed 0.95 confidence interval for the source entropy

ˆ

TABLE I. Neural network parameters. These are the typical parameters used
for the two stages of self-organizing maps �SOMs� in the automatic classi-
fication system.a

Parameter First stage Second stage

Map size 8�8 1�26
Input dimension 80�200 8�8
Iterations 40,000 80,000

0 8 7
�1 850 8
�0 0.1 0.03
�2 1000 800
	t 10 bins ¯

	f 6 bins ¯

aThe notation for the SOM parameters in this table follows Chapter 9 of
Haykin �1999�.
measured with H1, under the assumption that the actual
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humpback song is generated with an i.i.d. model. If the ob-

served Ĥ1 for the song is below this value, the null hypoth-
esis is rejected. A similar bootstrap procedure is used for the
second hypothesis �H1�HSW�, except that the empirical
first-order Markov model is used to generate the 1000 replica
sequences, and SWML estimator is used for the entropy es-
timation. The SWML entropy estimates were not constrained
to use the same window size n in Eq. �26� which obtained the
minimum HSW for the song, but rather could range over the
full set I for each replica sequence. The resulting confidence
bound is for the source entropy measured with HSW assum-
ing that the actual humpback source is a first-order Markov
source.

C. Correlation analysis

Rejecting both null hypotheses described above indi-
cates that neither the i.i.d. nor the first-order Markov models
are adequate to produce the structure of the observed hump-
back song. This does not rule out the possibility that the song
was produced by a higher-order Markov model. As discussed
in Section I B 5, entropy estimates for second- �and higher-�
order Markov models will be unreliable for humpback songs
with an alphabet of size �A�
20 and length �
300–1200
units. Instead, correlation analysis can be used to reject the
possibility of a higher-order Markov model.

The discrete sequence correlation of two symbol se-
quences x1

� and y1
m at lag  is defined by

r�x1
�,y1

m,� =
��i:xi = yi+,max�1,1 − � � i � min��,m − ���

min��,m,� + ,m − �

�27�

for ���min�� ,m�. The numerator represents the number
of symbols of xi and yi+ that agree within the overlapping

TABLE II. Entropy estimates from 16 humpback whale songs using the thre

The i.i.d. and Markov values are bias corrected as described in Sec. I B 6. T

as described in Sec. I B 7. ĤSW is consistently less than both Ĥ0 and Ĥ1, de
the songs. The strength of the song structure is also apparent in the high re

Date �Tape No.�
Length
�units�

�Â�
�units�

log �Â
Hmax

26 Dec 1976 �1A� 840 21 4.39
04 Jan 1977 �2� 1103 17 4.09
01 Feb 1977 �1-1� 972 27 4.75
04 Mar 1977 �1A-2� 978 25 4.64
10 Mar 1977 �1A-1� 967 27 4.75
10 Mar 1977 �1A-2� 577 26 4.70
12 Apr 1977 �4A� 805 33 5.04
17 May 1977 1021 17 4.09
01 Feb 1978 �1A� 1101 26 4.70
05 Feb 1978 �1A� 976 18 4.17
05 Feb 1978 �1B� 959 18 4.17
05 Feb 1978 �2A-1� 380 23 4.52
05 Feb 1978 �2A-2� 488 25 4.64
05 Feb 1978 �2B-1� 438 22 4.46
05 Feb 1978 �3A-2� 436 21 4.39
07 Feb 1978 �1B� 662 26 4.70
section. The denominator is the length of the overlapping
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section of the sequences after y has been shifted by .
Note that this definition can also be used for autocorrela-
tion if y is set equal to x.

A Markov model of any order is stationary, so the value
of the short time autocorrelation r�xn

n+L ,xn
� ,� should be in-

dependent of the value of n chosen, i.e., which segment of
the sequence is used for the autocorrelation. In practice, the
autocorrelation for a fixed value of  will fluctuate slightly
with n, but should be very similar if the process is stationary.
If the estimates of the autocorrelation for different values of
n are only similar over a range of lags 0��v, but diverge
for �v, this implies that the source is nonstationary, but
may be considered locally stationary for windows of length v
or less. This value of v determines the range of window sizes
I used for the SWML estimator in Eq. �26�.

To determine the stationarity of the humpback song, dis-
joint sections of longer songs was autocorrelated using two
151-unit sections from the song. Specifically, r�x300

450,x300
� ,�

and r�x600
750,x600

� ,� were compared to see if the correlation
function differed early and late in the recording.

In addition to this short-time autocorrelation analysis,
global autocorrelations were computed using r�x1

� ,x1
� ,� for

the songs. These autocorrelations, considered as a function of
, reveal the timescales of the dependencies and periodicities
in the symbol sequence. Sequences which are periodic or
quasi-periodic with period N will produce global autocorre-
lations with the same period. Comparing global autocorrela-
tions from different songs provides information about how
the periodicity changes between songs.

III. RESULTS

A. Entropy analysis

Table II presents the three entropy estimates for each

imators described in Secs. I B 3 and I B 4. All entropy estimates are in bits.

umber in parentheses next to the ĤSW indicates the window size n selected

trating that the Markov and i.i.d. models fail to capture the full structure of
ncy values for all songs.

i.i.d.

Ĥ0

Markov

Ĥ1

SWML

ĤSW�n�
Redundancy

�̂

4.02 0.84 0.58�10� 0.87
3.79 1.13 0.64�10� 0.84
4.13 0.99 0.47�10� 0.90
3.93 0.75 0.33�11� 0.93
4.22 1.17 0.68�11� 0.86
4.03 0.99 0.57�11� 0.88
4.54 1.10 0.56�10� 0.89
3.61 1.12 0.36�10� 0.91
4.38 1.10 0.56�11� 0.88
3.77 0.81 0.51�13� 0.88
3.88 0.83 0.58�11� 0.85
4.37 0.98 0.52�13� 0.88
4.36 1.05 0.64�13� 0.86
4.26 0.94 0.67�15� 0.85
4.37 1.01 0.60�11� 0.87
4.45 1.10 0.79�15� 0.83
e est

he n

mons
dunda

�

song, converted to symbol sequences by one of the human

Suzuki et al.: Information entropy of humpback whale songs 1859



classifiers. The values given for Ĥ0 and Ĥ1 are the bias-

corrected values, and the values ĤSW use window sizes in the

range I= �10,40�. The number in parentheses following ĤSW

is the window size yielding this minimum value in Eq. �26�.
Table II also includes the estimated redundancy �̂ for each

source, using ĤSW for the entropy H in Eq. �6�. The high
value of �̂ for each song indicates that the song structure is
strongly constrained, resulting in an entropy much less than
Hmax for the observed alphabet size �A�.

Figure 3 presents the i.i.d. �circles� and Markov
�squares� entropy estimates for individual songs with one-
tailed 0.95 confidence bounds for the null hypothesis, H0

�H1. Since all Ĥ1 lie below the confidence bound, we reject
the null hypothesis �p�0.05� and conclude that H1�H0.
This means that the i.i.d. model failed to capture the structure
embedded in all humpback songs analyzed, and also that the
humpback songs contain a temporal structure that at least
partially depends on the immediately previous unit within a
song.

Figure 4 presents Markov �squares� and SWML �dia-
monds� entropy estimates for individual songs with one-
tailed 0.95 confidence bound for the null hypothesis, H1

TABLE III. Automatic versus manual classification. The gaps between the
Consequently, the conclusions about the song structure are robust to the cla

4 Jan 1

Auto Human

i.i.d. model Ĥ0
2.84 3.71

Markov model �k=1� Ĥ1
2.48 1.37

Sliding window ĤSW�n� 1.95�10� 0.89�1

FIG. 3. The values of Ĥ0 �circles� and Ĥ1 �squares� plotted for each song in
the same order as Table II. The interval plotted for each song indicates the

lower limit of the one-tailed 0.95 confidence region for Ĥ1 under the hy-

pothesis that H0�H1. For all songs, Ĥ1 lies below the bars, supporting the
conclusion that H1�H0 with significance p�0.05. This indicates that the
humpback songs contain a temporal structure that partially depends on the
immediately previous unit within a song, and that the i.i.d. model failed to
capture the structures embodied by the humpback songs.
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�HSW. 9 out of 16 songs had ĤSW below this confidence
bound, and for these songs we conclude that HSW�H1 �p
�0.05�. For the seven other songs, the test did not conclude

that the Ĥ1 and ĤSW were sufficiently different at this sig-
nificance level. We offer two possible explanations to ac-
count for this result. All of these seven songs were recorded
in a one week period in early February 1978. Since they are
likely to be quite similar, those data points may not be sta-
tistically independent. Considering only one song in any
given month, the second hypothesis test concludes HSW

�H1 for six out of seven months. Furthermore, we note that

Ĥ1 may have residual negative bias �Sec. I B 6� if �D� was

underestimated, and ĤSW has positive bias �Sec. I B 6�. Both
sources of bias work to favor the null hypothesis by requir-
ing stronger statistical evidence to reject the null hypothesis,
but we disregarded these residual bias considerations in our
analysis. Therefore, it is expected that the true test results
may be more significant than the results presented in Fig. 4,
although we have no way to demonstrate this. Although the
result is less clearcut than the one shown in Fig. 3, the con-
clusion from Fig. 4 is that the Markov model failed to cap-

ent entropy estimates for each song persist regardless of the classifier used.
ation method chosen. All entropy estimates are in bits.

17 May 1977

Human 2 Auto Human 1 Human 2

3.79 4.38 3.61 3.61

1.13 2.69 1.26 1.12

0.64�10� 1.59�18� 0.47�10� 0.36�10�

FIG. 4. The values of Ĥ1 �squares� and ĤSW �diamonds� plotted for each
song in the same order as Table II. The interval plotted for each song indi-

cates the lower limit of the one-tailed 0.95 confidence region for ĤSW under

the hypothesis that H1�HSW. For 9 of the 16 songs, ĤSW lies below the
interval, supporting the conclusion that HSW�H1 with significance p
�0.05. This demonstrates that the Markov model failed to capture all of the
structure embodied by the majority of the humpback songs we analyzed, and
that the humpback songs contain temporal structure spanning over the range
beyond immediately adjacent units.
differ
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1
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ture all the structure embodied by the majority of songs we
analyzed, and also that the humpback songs contain a tem-
poral structure which spans beyond the immediately previous
unit within the song.

To control for observer bias, the songs were classified by
two humans and the SOM classifier described in Sec. II A.
The human classifiers disagree on roughly 5% of the units
for these songs, suggesting that there is no clear correct clas-
sification for all of the units. The automatic classifier dis-
agrees with the human observers for roughly 10% of the
units. Table III contrasts the entropy estimates obtained using
each of the three classifiers on two songs. The changes in the
entropy estimates between classifiers for a given model re-
flect the disagreements about the unit classifications. The en-
tropy estimates vary for the different classifiers, but all three

estimators exhibit substantial gaps between Ĥ0 and Ĥ1 and

between Ĥ1 and ĤSW. These gaps between the entropy esti-
mates are also robust to variations in the SOM parameters.
Therefore, the fundamental conclusions above about the
songs’ structure using Property 3 of Sec. I B 4 are robust to
the choice of classifier. We speculate that the strong struc-
tural constraints of the songs prevent the perturbations in unit
classifications from closing the gaps between the entropy

FIG. 5. Two short time autocorrelation estimates for a typical song. The top
respectively. Note that the correlation functions diverge substantially for lag
shows both correlations on the same axes for small lags. The values general
may be considered locally stationary over this range. Both correlations have
length of Payne et al. �1983�.
estimates.
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B. Correlation analysis

Local autocorrelation functions were computed to test
the stationarity of the songs. The results for May 17, 1977
are shown in Fig. 5. The top panel plots r�x300

450,x300
1021,� as a

function of the lag , while the middle panel plots
r�x600

750,x600
1021,� for the same song. Both plots have logarith-

mic vertical axes. Comparing the top two panels of Fig. 5
reveals that the correlation curves differ substantially for lags
of 100 units or more. This difference between the curves
demonstrates that the song statistics are nonstationary. Any
irreducible empirical Markov model has stationary statistics,
so consequently no such Markov model with an order less
than the maximum possible length of the song can capture
the structure of the songs. Lastly, note that the oscillations
with a period of 6–8 units in the autocorrelation function
indicate that there are repetitions in the song with that period.

A possible objection arises to the use of ĤSW for the
humpback songs, since the songs do not have stationary sta-
tistics and Eq. �21� assumes a stationary source. We offer two
rationales in response to these points. First, even when the
assumptions of the SWML entropy estimator are violated,
the estimator produces an upper bound on the entropy �Kon-

anels plot the correlations for units in the ranges �300, 450� and �600, 750�,
ter than 100 units, indicating that the song is nonstationary. The third panel
ree closely to each other with lags smaller than 40, indicating that the song
ng oscillation with a period of about 6, corresponding to the typical phrase
two p
s grea
ly ag
a stro
toyiannis et al., 1998�, so the true entropy is expected to be
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even lower than the values reported in Table II. Thus, the
conclusions drawn from Property 3 are still valid. Second,

over the window lengths used to obtain ĤSW, the source may
be considered locally stationary, as discussed in Sec. I B 7.
To justify this assertion, the bottom panel of Fig. 5 enlarges
and overlays the two autocorrelation values for 0��40.
This close agreement indicates that the song source may be
considered to be locally stationary over windows of 40 units
or less. Autocorrelation analysis of other songs exhibited
similar agreement over this range of lags. This agreement
determined our choice of I� �10,40� for the window lengths
range in Eq. �26�.

The global autocorrelation function r�x1
� ,x1

� ,� shown in
Fig. 6 for two songs exhibits a superposition of two oscilla-
tions. The shorter period low amplitude oscillations are those
of a period of 6–8 units seen in Fig. 5. On the larger times-
cale used for Fig. 6, these short period oscillations are no
longer clearly discernible, but appear as a vertical blur. The
larger amplitude oscillation has a period of roughly 180 units
for the Dec. 1976 song, and roughly 400 units for the May
1977 song. The other songs analyzed also exhibited a long
and short period oscillation. These oscillations demonstrate
that the songs possess constraints repeating on segments of
6–8 units in length and also segments hundreds of units in
length.

IV. DISCUSSION

Payne et al. �1983� previously analyzed a superset of the
data used in this study, using human observers of the spec-
trograms to tabulate the song duration data over 31 day pe-
riods. During their Period II of 1976–1977, which includes
Dec. 1976, the average song duration was 7.5 min. In their
Period VI of the same season, which includes May 1977, the
average duration was 13 min. The ratio of their averaged

FIG. 6. Global autocorrelation estimates for two songs from the 1976–1977
season. Note that the December song has a period of about 180 units, and
the May song of about 400 units. These periods are consistent with the song
durations reported in Payne et al. �1983�. Combining this information with
the shorter period shown in Fig. 5, these figures demonstrate that the se-
quence of units in the songs has multiple periods.
song durations is 1.7. On the other hand, using our correla-
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tion analysis, the periods of the Dec. 1976 and May 1977
songs are found to be 180 and 400 units, respectively. The
ratio is 2.2. Using an average of 2.5 s per unit, the durations
of these songs are approximately 7.5 and 16.7 min. The close
agreement between these ratios and durations suggests that
the longer period oscillations correspond to their song dura-
tion. Additionally, the 6–8 unit oscillations observed in the
correlation functions of our Fig. 5 correspond closely to the
phrase lengths of 4–10 for most phrases indicated on the
spectrograms in Figs. 3 and 4 of Payne et al. �1983� and
Figs. 6, 8, and 9 of Payne and McVay �1971�.

Intriguingly, the entropy and the period of the songs
vary over the 1976–1977 singing season. The entropy largely
peaks early in the season �Dec. and Jan.� and decreases
through the season. Recall from Property 1 of Section I B 2
that a constrained and predictable source has a lower entropy
than an unconstrained or unpredictable one. The entropy
variations through the season provide an objective quantita-
tive confirmation of several subjective observations made in
Payne et al. �1983�. They observed that “the whales were the
most consistent in terms of which themes they included be-
tween late 1977 and early 1978¼ when the number of
themes in each song was highest.” The relatively low entropy
value in May 1977 corroborates this observed consistency in
theme selection.

Payne and McVay �1971� defined a transitional phrase to
be a phrase occurring between two themes which combines
features of both. Some transitional phrases mix units from
two adjacent themes in a complex way. Fig. 17 of Payne et
al. �1983� plots the mean percent of the song duration de-
voted to transitional phrases. For the 1976–77 season, Period
II has the highest proportion of transitional phrases �5%�,
and the proportion monotonically decreases toward the end
of the season. These complicated unusual phrases should in-
crease the total entropy of the song, and the decrease in the
proportion of transitional phrases is consistent with the trend
found in this analysis of decreasing entropy estimates
through the season. Similarly, Payne et al. �1983� observed
“During the time when the song was least stable in terms of
which component themes were present, it contained transi-
tional phrases between all themes; but at the end of the
1976–77 season, when all themes were firmly established,
there were no transitional phrases left¼. In other words, the
song was maximally compartmentalized, organized, and pre-
dictable.” Again, this qualitative observation is consistent
with the general trend of decreasing entropy toward May
1977.

Guinee and Payne �1988� suggested that songs with
larger number of themes �longer songs� are often more re-
dundant in phrase structures than shorter songs. Such redun-
dant long songs would be expected to have lower source
entropies than shorter songs. Phrased in terms of the entropy
analysis, the song lengths determined by the global correla-
tion analysis and the source entropy of the song should be
negatively correlated. This would roughly conserve the total
amount of information required to remember a song’s struc-
ture. Our data generally confirm this for the seven indepen-
dent song sessions analyzed from the 1976–1977 season.

�Note that in Table II, there are two segments from the same
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song session on Mar. 10, and thus these are not really inde-
pendent observations.� Figure 7 plots the average period ver-
sus the source entropy for these seven song sessions. The
average period was estimated from the global autocorrelation
functions. The product of the song length and source entropy
provides a measure of the average amount of total informa-
tion in the song. One possible relation consistent with
Guinee and Payne’s �1988� observations is that this product,
the bits per song, should be roughly constant through the
season. The solid line in Fig. 7 indicates 130.3 bits per song,

which is the average of the product of the period and ĤSW for
the song sessions plotted in this figure. Although this relation
may be an overly simplistic one, the curve loosely fits the
data points, with clear outliers. These observations about the
total information are made from a limited number of songs.
A more diverse body of data is needed to reach general con-
clusions.

The results of this study have implications for larger
questions comparing the structures of human and nonhuman
animal acoustic communications. Some researchers have hy-
pothesized that nonhuman animal acoustic communications
lack recursive structures �Chomsky, 1988; Hauser et al.,
2002�. A recent survey noted that “long-distance hierarchical
relations are found in all natural languages, for which, at a
minimum, a ‘phrase structure grammar’ is necessary,”
�Hauser et al., 2002�. The same authors observed that “the
core recursive aspect of FLN �the Faculty of Language—
Narrow Sense� currently appears to lack any analog in ani-
mal communication” and conjectured that “FLN—the com-
putational mechanism of recursion—is recently evolved and
unique to our species” �Hauser et al., 2002�. This hypothesis
is supported by Fitch and Hauser’s recent results demonstrat-
ing that cotton-top tamarins �Saguinus oedipus� are able to

FIG. 7. This scatter plot represents the general trend of increasing song
length and decreasing source entropy during the 1976–1977 season ob-
served in seven songs. With the exception of one anomalous singer �Mar.
10�, the period of the song increases from Dec. 1976 through May 1977. The
source entropy generally decreases through the season, but not as steadily as
the period increases. The solid line represents the best fit of a model in
which the product of the period and the source entropy is constant for the
season. This product, 130.3 bits/ song, represents the average total informa-
tion in the sequence of units in the song.
parse synthetic stimuli sequences generated by finite-state
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grammars, but not those generated by a simple recursively
hierarchical �phrase structure� grammar �Fitch and Hauser,
2004�. Researchers studying human languages describe the
property of creating an infinite number of valid signals from
a finite set of discrete units as “discrete infinity.” Chomsky
�1988�, in discussing this property, conjectured that “Human
language has the extremely unusual, possibly unique, prop-
erty of discrete infinity” and that “language is based on an
entirely different principle than any animal communication
system.”

The hierarchical structure proposed by Payne and
McVay �1971� for humpback whale song challenges these
conjectures on the uniquely human nature of long-distance
hierarchical relations, and potentially on the uniquely human
property of recursion and discrete infinity. Hierarchical
grammars may be efficiently represented using recursion, al-
though recursion is not necessarily implied by hierarchy. Ad-
ditionally, the proposed hierarchical structure and continuous
modification of the song raise the possibility that humpback
whales can, in theory, create an infinite number of valid
songs from the finite set of discrete units. The entropy com-
parisons in Sec. III A demonstrate that the humpback songs
contain structures more complex than first-order Markov
models. The lack of stationarity found in the short-term cor-
relation properties of the songs in Sec. III B establishes that
the songs cannot be modeled by a higher-order Markov
model. The multiple periods on the order 6–8 and hundreds
of units found in the autocorrelations are consistent with the
hierarchical structure for the songs proposed by Payne and
McVay �1971�. These multiple periods in the autocorrelation
functions illustrate that humpback songs “go beyond purely
local structure,” demonstrating the sort of “statistical regu-
larities that are separated by an arbitrary number of words”
which Hauser et al. �2002� asserted are a consequence of
natural languages. A hierarchical grammar is a simple and
efficient model to produce multiple periods in a song’s struc-
ture. In light of the previously mentioned inability of some
primates to parse hierarchically organized acoustic stimuli
�Fitch and Hauser, 2004�, this evidence of hierarchical struc-
ture in the songs of the evolutionarily more distant hump-
back whales is intriguing.

It is important to emphasize that we do not claim that
humpback songs are a language in the sense recognized by
linguists. Hauser et al. �2002� define the “conceptual-
intentional” component of a language as the property that the
different sentences produced as the words are rearranged
within the grammatical structure “differ systematically in
meaning.” There is no evidence that humpback songs satisfy
this linguistic requirement. Payne and McVay �1971� made
no claims that the large potentially infinite variety of songs
produced by the hierarchical ordering of the discrete units
have distinct meanings. Tyack �1981� also speculated that
each change in the song does not correspond to a change in
what the song communicates to other whales. More recently,
Payne �1995� explicitly asserted

“As regards the possible language content of hump-
back whale songs one can say with certainty only
that no one knows whether they contain anything at

all that we would equate with language. At the
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present state of knowledge, claims to the contrary
are simply speculation.”
For any one of the components of language enumerated

by Hauser et al. �2002�, it appears possible that there is some
animal communication system which possesses that property
while lacking one or more of the other linguistic compo-
nents. Bonobo �Pan paniscus� lexigrams appear to satisfy the
conceptual-intentional requirement of language �Savage-
Rumbaugh et al., 1986�, but there are no clear data support-
ing hierarchical or recursive structure in these animals’ com-
munications. The results of the present study are consistent
with a hierarchical and recursive structure for humpback
song, but as noted above, there is no evidence for humpback
song satisfying the conceptual-intentional property of lan-
guage. This evidence supporting hierarchical structure in
humpback song, taken in conjunction with recursion’s
known efficiency in representing hierarchical structures,
raises questions about Hauser et al.’s �2002� conjecture that
only humans employ recursion to structure their communi-
cation signals.

V. CONCLUSION

This paper presents an overview of modern information
theory in the context of the analysis of animal communica-
tion systems, and then applies these techniques to humpback
whale song. The SWML entropy estimator is proposed as a
replacement for the i.i.d. and Markov model entropy estima-
tors commonly employed to study animal communications.
The SWML estimator is applicable to a much broader class
of information sources than the model-based estimators, and
its estimates provide valid upper bounds on the entropy for
nonstationary sources. The SWML estimator also converges
rapidly—an important characteristic for animal communica-
tion studies where it is often challenging to obtain long data
sequences. In contrast, high-order Markov models risk un-
derestimating the entropy and drawing erroneous conclu-
sions about the source unless extremely large data sets are
available.

The entropy and correlation properties are estimated for
16 humpback whale songs. The entropy estimates for both
the i.i.d. and first-order Markov models exceed the SWML
estimate, indicating that these models fail to capture the
structure of the song. The results hold for songs transcribed
by two humans and a computer program, controlling for any
subjective bias. The SWML estimates indicate that the
amount of information carried by the sequence of the units in
the song is less than 1 bit per unit. Combining the SWML
entropy estimate with the period estimate from the correla-
tion analysis gives an average of roughly 130 bits per song.
The correlation analysis demonstrates that songs are nonsta-
tionary, but may be considered locally stationary over seg-
ment lengths of roughly 40 units. This nonstationarity of the
source means that no irreducible empirical Markov model
can represent the song structure. The correlation data also
indicate that the songs are periodic on two scales of approxi-
mately 6–8 and 200–400 units. Such a correlation structure
is simply and efficiently produced by hierarchical models—

consistent with the Payne and McVay �1971� grammar—but
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difficult to produce without hierarchy. The entropy and cor-
relation results also provide quantitative confirmation of sev-
eral observations made by Payne et al. �1983� about the
song’s evolution during the 1976–1977 season. The correla-
tion data demonstrate that the songs possess strong long-
distance dependencies of the sort discussed in Hauser et al.
�2002� as a hallmark of phrase structure grammar. In closing,
there is substantial quantitative evidence consistent with the
sequence of units in the humpback songs being organized in
a hierarchical structure, but equally strong evidence that this
sequence is carrying relatively little information.
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APPENDIX A. PROGRESSION OF INFORMATION
ENTROPY AND ITS ESTIMATION

Information entropy was first defined for stationary er-
godic Markov sources and the entropy theorem was proved
for i.i.d. sources by Shannon �1948�. Khinchin �1953, 1957�
reinforced Shannon’s concepts with rigorous mathematical
treatments and proved the entropy theorem for stationary er-
godic Markov processes. McMillan �1953� extended the en-
tropy theorem to stationary ergodic sources with conver-
gence in probability. Breiman �1957, 1960� sharpened the
convergence of the entropy theorem to convergence with
probability one. McMillan �1953� named this theorem the
asymptotic equipartition property. However, a more intuitive
name, the entropy theorem, from Shields �1996�, is used in
this paper. The coding theorem and its converse for noiseless
encoders were first proved by Khinchin �1953, 1957�. While
Shannon’s theory is based entirely on probability theory,

Kolmogorov �1965� proposed an alternate measure of com-
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plexity which avoids any use of probabilistic concepts. Kol-
mogorov proposed that length of the shortest binary program
that generates the sequence be used as a measure of com-
plexity. Motivated by this approach, the Lempel-Ziv com-
plexity �Lempel and Ziv, 1976�, finite state complexity �Ziv
and Lempel, 1978a�, and compressibility �Ziv and Lempel,
1978b� were defined for individual sequences instead of
probabilistic sources. Ziv and Lempel �1978a, 1978b� proved
coding theorems and their converses for finite-state complex-
ity and compressibility without using the Shannon entropy,
and showed that both concepts are closely related to the
source’s Shannon entropy by proving Eq. �5� for stationary
ergodic sources. They also proposed expanding the concept
of entropy to nonstationary sources by using the expected
compressibility as an analog of entropy. Verdú and Han
�1997� proved that satisfying the entropy theorem is equiva-
lent to satisfying the noiseless coding theorem. They also
proposed an extension to the definition of entropy under
which some nonstationary sources satisfied the coding theo-
rems. Muramatsu and Kanaya’s �1999� extension to the defi-
nition of entropy, almost sure sup entropy, replaces the limit
in Eq. �4� of Definition 2 with a limit supremum. Under this
extension of entropy, the coding theorem and its converse
hold with probability one for all sources with a consistent
probability law.

The basic theory underlying the SWML estimator was
developed by Wyner and Ziv �1989�. Equation �19� was
proven with convergence in probability �Wyner and Ziv,
1989�, which was later sharpened to convergence with prob-
ability one �Ornstein and Weiss, 1993�. Wyner �1993� ini-
tially proved the convergence of the average match length
�Eq. �20�� for finite memory and fixed window size, which
was later expanded in Wyner and Wyner �1995�. Kontoyian-
nis and Suhov �1994� proved a similar result for the Doeblin
condition, further developed in Kontoyiannis et al. �1998�.
The SWML entropy estimator was proposed in similar forms
by Kontoyiannis, 1997; Kontoyiannis et al., 1998; and
Wyner et al., 1998.

1This class of encoders are called noiseless or faithful encoders, meaning
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