Assignments: 35%
- Students will complete 4/5 assignments based on algorithms presented in class
- Lab meets in I1 (West) 109 on Lab Wednesdays
 - Lab 0: January 14th (completed)
 - Introduction to Python (No Assignment)
 - Lab 1: January 28th
 - Measuring Information (Assignment 1)
 - Due February 11th
 - Lab 2: February 11th
 - L-Systems (Assignment 2)
 - Due February 25th
 - Lab 3: March 11th
 - Cellular Automata and Boolean Networks (Assignment 3)
Readings until now

- **Class Book**
 - Chapter 8 - Artificial Life
 - Chapter 7, sections 7.1, 7.2 and 7.4 – Fractals and L-Systems
 - Appendix B.3.1 – Production Grammars

- **Lecture notes**
 - Chapter 1: “What is Life?”
 - Chapter 2: “The logical Mechanisms of Life”
 - Chapter 3: Formalizing and Modeling the World
 - posted online @ http://informatics.indiana.edu/rocha/i-bic

- **Papers and other materials**
 - Life and Information
 - Logical mechanisms of life (H400, Optional for I485)

- **Optional**
 - Chapter 1 – Introduction
 - Chapters 5, 6 (7-9) – Self-similarity, fractals, L-Systems
phase or state-space

- Map of variables in time
 - Time is parameter
 - Trajectory (orbit) in state space

 \[X(t) = (x_1(t), x_2(t), x_3(t)) \]

- Continuous (reversible) systems
 - Only one trajectory passes through each point of a state-space
 - State-determined system
 - 2 points on different trajectories will always be on different trajectories
 - Albeit arbitrarily close

 - Determinism, strict causality
 - Laplace

 - Not true in discrete systems
vector fields in phase-space
where motion leads to volumes of phase space to which the system converges after a long enough time.

Fixed-point behavior (0-dimensional attractor)

Basin of attraction
Volume of the phase-space defined by all trajectories leading into the attractor.
why the attractor behavior?

- Energy dissipation (thermodynamic systems)
 - Friction, thermodynamic losses, loss of material, etc.
 - Volume contraction in phase-space
 - System tends to restrict itself to small basins of attraction
 - Self-organization
 - Dissipative systems (Prigogine)

- Hamiltonian systems
 - Frictionless, no attractors
 - Conservation of energy
 - Ergodicity
Morphogenesis
- development of the structure of an organism or part
 - phenotype develops in time under the direction of the genotype + dynamic constraints
- The process in complex system-environment exchanges that tends to elaborate a system's given form or structure.
- Fischer (1924)
 - Reaction-diffusion equation
 - Propagation of a gene a population
- Nicolas Rashevsky
 - Embryogenesis
- Alan Turing
 - spent the last few years of his life developing his morphogenetic theory and using the new computer to generate solutions to reaction-diffusion systems.

\[
\begin{align*}
\frac{\delta a}{\delta t} &= f(a,b) + D_a \left(\frac{\delta^2 a}{\delta x^2} + \frac{\delta^2 a}{\delta y^2} \right) \\
\frac{\delta b}{\delta t} &= g(a,b) + D_b \left(\frac{\delta^2 b}{\delta x^2} + \frac{\delta^2 b}{\delta y^2} \right)
\end{align*}
\]
Reaction-diffusion model
- Stable tension between production and transformation
 - When balance is disturbed, tension restores balance:
- Metaphor
 - Island populated by cannibals and (celibate) missionaries.
 - Missionaries do not reproduce, but can recruit and die (transform)
 - Cannibals reproduce and die (produce)
 - Two missionaries convert a cannibal, leading to tension between production and transformation

Kele's Science Blog
Reaction-diffusion model
- Stable tension between production and transformation
 - When balance is disturbed, tension restores balance:
- Metaphor
 - Island populated by cannibals and (celibate) missionaries.
 - Missionaries do not reproduce, but can recruit and die (transform)
 - Cannibals reproduce and die (produce)
 - Two missionaries convert a cannibal leading to tension between production and transformation
Reaction-diffusion model
- Stable tension between production and transformation
 - When balance is disturbed, tension restores balance:
- Metaphor
 - Island populated by cannibals and (celibate) missionaries.
 - Missionaries do not reproduce, but can recruit and die (transform)
 - Cannibals reproduce and die (produce)
 - Two missionaries convert a cannibal leading to tension between production and transformation
(energy) landscape metaphor

- Phase-space as landscape
 - State of the system as a drop of water released in hills and valleys

Attractors

Stable

Unstable

Stable

Attractor 1

Attractor 2
types of attractors

- **Attractors**
 - Phase space volume to where dynamical system converges asymptotically over time

- **Fixed point**
 - Steady-state
 - Saddle
 - Stable in a dimension and unstable on another
 - When basins of attraction meet
- Limit cycle
 - Periodic motion
 - Repetitive oscillation among a number of states
 - loop

- 2 values
- 4 values

Types of attractors
- Quasiperiodic attractor
 - Several independent cyclic motions
 - Toroidal attractors
 - Never quite repeat themselves
Strange or chaotic attractors

- Sensitivity to initial conditions
 - If system is released from two distinct, arbitrarily close points on the attractor basin, after sufficient time their trajectories will be arbitrarily far apart from each other

- Deterministic Chaos
 - If we could know the exact initial condition, trajectory would be determined

- Low-dimensional chaos
 - Strange attractors are restricted to small volumes of phase-space
 - More ordered than Hamiltonian or larger limit cycles

- Weak Causality
 - 3-body problem
 - Any slight measurement difference results in very different predictions
 - Butterfly effect
 - Lorenz attractor
Edward Lorenz

- Discovered sensitivity to initial conditions in a simple 3-variable dynamical system
 - A simplified model of weather
 - Convection flows in the atmosphere

\[
\begin{align*}
\frac{dx}{dt} &= \sigma(y-x) \\
\frac{dy}{dt} &= r x - y - xz \\
\frac{dz}{dt} &= xy - bz
\end{align*}
\]
Lorenz attractor
Phasespace
The logistic map

- **Demographic model**
 - introduced by Pierre François Verhulst in 1838
- **Continuous state-determined system**
 - Memory of the previous state only
- **Observations**
 - \(X=0 \): population extinct
 - \(X=1 \): Overpopulation, leads to extinction

\[
x_{t+1} = rx_t(1 - x_t)
\]

- **Population size**
 - \(x \in [0,1] \)
 - \(r \in [0,4] \)

- **Reproduction rate**
 - Positive feedback
 - Negative feedback

quadratic equation
\[x_{t+1} = rx_t(1 - x_t) \]
\(x \in [0,1] \)
\(r \in [0,4] \)

\[x = 0 \lor x = 1 - \frac{1}{r} \]

Fixed-point attractors

\[f(x) = r x (1 - x) \]
\[f(x) = x \implies r x (1 - x) = x \implies x(r(x - 1) + 1) = 0 \]

\[f'(x) = r(1 - 2x), \begin{cases} |f'(x)| < 1 \implies \text{stable} \\ |f'(x)| > 1 \implies \text{unstable} \end{cases} \]
logistic map

\[r \leq 1 \]

\[x = 0 \lor x = \frac{1}{1} \]

\[f'(x) = r(1 - 2x), \begin{cases} |f'(x)| < 1 \Rightarrow \text{stable} \\ |f'(x)| > 1 \Rightarrow \text{unstable} \end{cases} \]

\[x = 0 \Rightarrow |f'(x)| = |r(1 - 2x)| = r, \begin{cases} r < 1 \Rightarrow \text{stable} \\ r > 1 \Rightarrow \text{unstable} \end{cases} \]
Class Book
 - Chapter 2, all sections
 - Chapter 7, sections 7.3 – Cellular Automata
 - Chapter 8, sections 8.1, 8.2, 8.3.10

Lecture notes
- Chapter 1: What is Life?
- Chapter 2: The logical Mechanisms of Life
- Chapter 3: Formalizing and Modeling the World
 - posted online @ http://informatics.indiana.edu/rocha/i-bic

Papers and other materials
- Optional
 - Chapters 10, 11, 14 – Dynamics, Attractors and chaos